Codex Biosolutions, Inc.
Codex Biosolutions, Inc.

CodexBiosolutions provides cell based assay products and services to academic and governmental research institutes, and other research labs within the pharmaceutical and biotechnology industries. The company is headquartered in the I-270 Hi-Tech corridor in the state of Maryland. The core products of CodexBiosolution are ACTOne Cell lines and membrane potential kits which are licensed from BD Biosciences. They also develop other new cell based products to meet the demands from various customers.

ACTOne Cell Based Assay Technology

ACTOne Technology is the key platform used by Codex BioSolutions for development of Cell Based Assay for GPCR and PDE.

It is based upon a modified cyclic nucleotide-gated (CNG) ion channel as a biosensor of cAMP activity in live cells. This channel responds in real-time to increases or decreases in intracellular cAMP levels by coordinately altering cation flux (e.g., calcium, potassium or sodium), which can be measured by calcium-sensitive fluorescent indicators, or by Codex’s optimized membrane-potential dye on broadly-available plate readers or on single-cell imagers. By juxtapositioning this biosensor adjacent to adenylyl cyclase, the enzyme responsible for synthesis of cAMP, in the membrane of cells that also express the GPCR target of interest, the biosensor provides ultrasensitive responses to cAMP fluctuations (Rich et. al., J. Gen. Physiol. 2000;116:147–161). The technology platform enables live-cell GPCR screening or deorphanization of agonists, antagonists and allosteric modulators of Gs, Gi or Gq-coupled receptors in 1536-well formats. Because the technology directly measures cAMP through CNG channels, it detects GPCR activity through its nature pathway. No engineering or modifications to the G protein is required. The assay is highly sensitivity to intracellular cAMP change. It has excellent signal to noise ratio and high z’ value. It is also cost-effective and easy to use. Preliminary evidence has been developed that supports the ability to freeze these cell lines in ready-to-screen format, and for enabling receptor profiling for specificity assessment.

The cyclic nucleotide phosphodiesterases (PDEs) are enzymes that catalyze hydrolysis of 3′, 5′-cyclic nucleotides, such as cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), to their corresponding 5′-nucleotide monophosphates. These enzymes play important roles in controlling cellular concentrations of cyclic nucleotides and have central roles in a variety of intracellular signaling events. As such, phosphodiesterases are emerging as a promising class of drug targets, particularly in asthma, cardiovascular and CNS diseases. Currently PDE inhibitors are identified in screens employing biochemical assays using pure substrates (cAMP or cGMP) and purified recombinant PDE enzymes. We have leveraged the CNG channels in the ACTOne Technology to detect intracellular cAMP/cGMP changes and developed the first commercially available live-cell PDE inhibitor assays.

To measure cAMP specific PDE activity, a constitutively active Gs-coupled GPCR is over-expressed in the cells containing CNG channels to stimulate adenylyl cyclases, leading to cAMP synthesis. The produced cAMP is hydrolyzed by intracellular PDE so the steady cAMP is kept at low level. Upon the PDE activity inhibition, the cellular cAMP level rises quickly and is measured by the CNG biosensor. This assay has been used to identify inhibitors of PDE4 in a 1536 well format (Titus et al, J Biomol Screen 2008; 13: 609-618).

To assay cGMP specific PDE activity, soluble guanylate cyclase (sGC) was stably transfected into the cells containing CNG channels. Cellular cGMP can be increased by the sGC stimulator, BAY 41-2272. In the presence of cGMP specific PDE, the produced cGMP is hydrolyzed quickly by PDE so the steady level of cGMP is low. By adding a cGMP specific PDE inhibitor, the cGMP can accumulate quickly and activate CNG channels.

 

ACTOne™ cAMP Fluorimetric ELISA Assay Kit, one 96-well plate (CB-80500-503) Signal Transduction Codex Biosolutions, Inc. CDXA70003
Adenosine 3’, 5’ cyclic monophosphate (cAMP) is an important second messenger in intracellular signal transduction. Monitoring cAMP levels is one of the most common ways to screen for agonists and antagonists of GPCRs. ACTOne™ cAMP Fluorimetric ELISA Assay Kit is based on the compe..
ACTOne™ cAMP Fluorimetric ELISA Assay Kit, ten 96-well plates (CB-80500-513) Signal Transduction Codex Biosolutions, Inc. CDXA70004
Adenosine 3’, 5’ cyclic monophosphate (cAMP) is an important second messenger in intracellular signal transduction. Monitoring cAMP levels is one of the most common ways to screen for agonists and antagonists of GPCRs. ACTOne™ cAMP Fluorimetric ELISA Assay Kit is based on the compe..
ACTOne™ Membrane Potential Dye Bulk Kit (100-plate) (CB-80500-211) Signal Transduction Codex Biosolutions, Inc. CDXB40002
cAMP is a key second messenger involved extensively in cellular signal transduction pathways associated with the majority of G-protein coupled receptors (GPCRs). The activation of these GPCRs by neurotransmitters, lipids, nucleotides, peptides and hormones results in the activation or the inhibition..
ACTOne™ Membrane Potential Dye Kit (10-plate) (CB-80500-201) Signal Transduction Codex Biosolutions, Inc. CDXB40001
cAMP is a key second messenger involved extensively in cellular signal transduction pathways associated with the majority of G-protein coupled receptors (GPCRs). The activation of these GPCRs by neurotransmitters, lipids, nucleotides, peptides and hormones results in the activation or the inhibition..
EnerCount™ Cell Growth Assay Kit, 10 ml (CB-80551-010) Signal Transduction Codex Biosolutions, Inc. CDXB40005
The EnerCount cell growth kit is a simple and sensitive assay that measures ATP levels in cultured cells, as well as in solution. The assay produces a stable luciferase-generated luminescence signal that can be recorded in commonly used luminometer instruments. Since ATP supplies energy to all aspe..
EnerCount™ Cell Growth Assay Kit, 100 ml (CB-80551-100) Signal Transduction Codex Biosolutions, Inc. CDXB40006
The EnerCount cell growth kit is a simple and sensitive assay that measures ATP levels in cultured cells, as well as in solution. The assay produces a stable luciferase-generated luminescence signal that can be recorded in commonly used luminometer instruments. Since ATP supplies energy to all aspe..
EnerCount™ Cell Growth Assay Kit, 10x100 ml (CB-80551-999) Signal Transduction Codex Biosolutions, Inc. CDXB40007
The EnerCount cell growth kit is a simple and sensitive assay that measures ATP levels in cultured cells, as well as in solution. The assay produces a stable luciferase-generated luminescence signal that can be recorded in commonly used luminometer instruments. Since ATP supplies energy to all aspe..
Mitochondrial Membrane Potential Indicator Kit, 10-plate (CB-80600-010) Signal Transduction Codex Biosolutions, Inc. CDXB40008
Decreases in mitochondrial membrane potential (MMP) have been associated with mitochondrial dysfunction that could lead to cell death. The MMP is generated by an electrochemical gradient via the mitochondrial electron transport chain coupled to a series of redox reactions. Measuring the MMP in livin..
Non-Wash Calcium Dye Bulk Kit, 100-plate (CB-80500-311) Signal Transduction Codex Biosolutions, Inc. CDXB40010
The Codex ACTOne™ Non-Wash Calcium Dye Kit allows homogeneous measurement of intracellular calcium changes caused by activation of G-protein coupled receptors or calcium channels. The assay involves only one step of dye addition and does not require any washing steps. It is user friendly and c..
Non-Wash Calcium Dye Kit, 10-plate (CB-80500-301) Signal Transduction Codex Biosolutions, Inc. CDXB40009
The Codex ACTOne™ Non-Wash Calcium Dye Kit allows homogeneous measurement of intracellular calcium changes caused by activation of G-protein coupled receptors or calcium channels. The assay involves only one step of dye addition and does not require any washing steps. It is user friendly and c..
©BioAstrum Corporation. All Rights Reserved 2014.
Google+